Cluster-Based Membership Function Acquisition Approaches for Mining Fuzzy Temporal Association Rules
نویسندگان
چکیده
منابع مشابه
Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms
Different studies have proposedmethods formining fuzzy association rules fromquantitative data, where themembership functions were assumed to be known in advance. However, it is not an easy task to know a priori the most appropriate fuzzy sets that cover the domains of quantitative attributes for mining fuzzy association rules. This paper thus presents a new fuzzy data-mining algorithm for extr...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملMining fuzzy periodic association rules
We develop techniques for discovering patterns with periodicity in this work. Patterns with periodicity are those that occur at regular time intervals, and therefore there are two aspects to the problem: finding the pattern, and determining the periodicity. The difficulty of the task lies in the problem of discovering these regular time intervals, i.e., the periodicity. Periodicities in the dat...
متن کاملCPDA Based Fuzzy Association Rules for Learning Achievement Mining
This paper proposes a fusion model to reinforce fuzzy association rules, which contains two main procedures: (1) employing the cumulative probability distribution approach (CPDA) to partition the universe of discourse and build membership functions; and (2) using the AprioriTid mining algorithm to extract fuzzy association rules. The proposed model is more objective and reasonable in determinin...
متن کاملGenetic algorithm based framework for mining fuzzy association rules
It is not an easy task to know a priori the most appropriate fuzzy sets that cover the domains of quantitative attributes for fuzzy association rules mining, simply because characteristics of quantitative data are in general unknown. Besides, it is unrealistic that the most appropriate fuzzy sets can always be provided by domain experts. Motivated by this, in this paperwe propose an automatedme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3004095